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It should be remembered that the metric tensor νij and νij in a convected coordinate
system are related to the metric tensors gij and gij in a spatial coordinate system by
Eqs. (2.84) and (2.85).

Therefore, we can write the following general rule of coordinate transformation of
a second-order tensor:

Amn(ξ, t) = (∂xi/∂ξm)(∂xj /∂ξn)aij (x, t) (2.102)

where Amn(ξ, t) and aij (x, t) are covariant components of a tensor of second order in
convected and fixed coordinate systems, respectively. Then the material derivative of
Amn(ξ, t) requires the material derivative of the right-hand side of Eq. (2.102), yielding
(see Appendix 2B)
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or in direct notation
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Here, �/�t is called the “convected derivative” due to Oldroyd (1950), and it is
the fixed coordinate equivalent of the material derivative of a second-order tensor
referred to in convected coordinates. The physical interpretation of the right-hand side
of Eq. (2.104) may be given as follows. The first two terms represent the derivative of
tensor aij with time, with the fixed coordinate held constant (i.e., Daij /Dt), which may
be considered as the time rate of change as seen by an observer in a fixed coordinate
system. The third and fourth terms represent the stretching and rotational motions of
a material element referred to in a fixed coordinate system. This is because the veloc-
ity gradient ∂vk/∂xi (or the velocity gradient tensor L defined by Eq. (2.59)) may
be considered as a sum of the rate of pure stretching and the material derivative of the
finite rotation. For this reason, the convected derivative is sometimes referred to as the
“codeformational derivative” (Bird et al. 1987).

Similarly, for contravariant components Amn(ξ, t) and aij (x, t) of a tensor of second
order in convected and fixed coordinate systems, respectively, we have
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In Chapter 3, we show that the contravariant and covariant components, respectively,
of the convected derivative of the stress tensor give rise to different expressions for the
material functions in steady-state simple shear flow. When compared with experimental
data, it turns out that the material functions predicted from the contravariant components
of the convected derivative of the stress tensor give rise to a correct trend, while the
material functions predicted from the covariant components of the convected derivative
of the stress tensor do not.

Now, we can apply the general rule of transformation to the material derivative of
a strain tensor in the convected coordinates, given by Eqs. (2.100) and (2.101). For
instance, from Eq. (2.84) we have
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Since the spatial metric gmn(x) is independent of time, it can be easily shown that
(Oldroyd 1950)
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where dmn are the components of the rate-of-strain tensor d defined by Eq. (2.60).
It is important to note that there are other types of time derivatives which also

transform as a tensor from convected to fixed coordinates. One particular time deriva-
tive that has received particular attention by rheologists is the so-called “Jaumann
derivative,” which was suggested first by Zaremba (1903) and later reformulated by
other investigators (DeWitt 1955; Fromm 1947). The Jaumann derivative �/�t of a
second-order tensor aij is defined as
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where ω is the vorticity tensor defined by Eq. (2.61). The physical interpretation of the
right-hand side of Eq. (2.111) may be given as follows. The first two terms represent
the material derivative of aij , similar to the first two terms on the right-hand side of
Eq. (2.104). However, the third and fourth terms containing only the vorticity tensor ω

represent the rotational motion of a material element referred to in a fixed coordinate
system. For this reason, the Jaumann derivative is sometimes referred to as the “coro-
tational derivative” (Bird et al. 1987). In Chapter 3 we show that the contravariant and
covariant components, respectively, of the Jaumann derivative of the stress tensor give
rise to identical expressions for the material functions in steady-state simple shear flow,
predicting the same trend as that observed experimentally.

2.6 The Description of Stress and Material Functions

Let us consider now the stress tensor, which causes or arises from deformation.
In order to give the reason why a second-order tensor is required to describe the stress,
a development of Cauchy’s law of motion is needed. The physical significance of the
stress tensor may be illustrated best by considering the three forces acting on three
faces (one force on each face) of a small cube element of fluid, as schematically shown
in Figure 2.4. For instance, a force (which is the vector) acting on the face ABCD
with an arbitrary direction may be resolved in three component directions: the force
acting in the x1 direction is T11dx2dx3, the force acting in the x2 direction is T12dx2dx3,
and the force acting in the x3 direction is T13dx2dx3. Similarly, the forces acting on
face BCFE are T21dx1dx3 in the x1 direction, T22dx1dx3 in the x2 direction, T23dx1dx3

Figure 2.4 Stress components on a cube.
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in the x3 direction. Likewise, the forces acting on face DCFG are T31dx1dx2 in the
x1 direction, T32dx1dx2 in the x2 direction, and T33dx1dx2 in the x3 direction.

In dealing with the state of stresses of incompressible fluids under deformation or
in flow, the total stress tensor T is divided into two parts:

∥∥∥Tij

∥∥∥ =
∥∥∥∥∥∥

T11 T12 T13
T21 T22 T23
T31 T32 T33

∥∥∥∥∥∥ =
∥∥∥∥∥∥

−p 0 0
0 −p 0
0 0 −p

∥∥∥∥∥∥+
∥∥∥∥∥∥

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

∥∥∥∥∥∥ (2.113)

where the component Tij of the stress tensor T is the force acting in the xi direction
on unit area of a surface normal to the xi direction. The components T11, T22, and T33
are called normal stresses since they act normally to surfaces, the mixed components
T12, T13, and so on, are called shear stresses. In direct notation, Eq. (2.113), using
Cartesian coordinates, can be expressed by

T = −pδ + σ (2.114)

where the δ is the unit tensor, σ is the deviatoric stress tensor (or the extra stress tensor)
that vanishes in the absence of deformation or flow, and p is the isotropic pressure.
Note in Eq. (2.113) or Eq. (2.114) that p has a negative sign since it acts in the direction
opposite to a normal stress (T11, T22, T33), which by convention is chosen as pointing
out of the cube (see Figure 2.4). It should be mentioned that in an incompressible
liquid, the state of stress is determined by the strain or strain history only to within
an additive isotropic constant, and thus p appearing in Eq. (2.113) or in Eq. (2.114)
is the pressure that can be determined within the accuracy of an isotropic term. As
is shown in some later chapters (e.g., Chapter 5), only pressure gradient plays a role
in describing fluid motion. Thus the isotropic term, pδ in Eq. (2.114) has no effect
on fluid motion, i.e., the addition of an isotropic term of arbitrary magnitude has no
consequence to the total stress tensor T when a fluid is in motion.

Special types of states of stress are of particular importance. In a liquid that has
been at rest (i.e., there is no deformation of a fluid) for a sufficiently long time, there
is no tangential component of stress on any plane of a cube and the normal component
of stress is the same for all three planes, each perpendicular to the others. This is the
situation where only hydrostatic pressure, −p, exists. In such a situation, Eq. (2.113)
reduces to

∥∥∥Tij

∥∥∥ =
∥∥∥∥∥∥

−p 0 0
0 −p 0
0 0 −p

∥∥∥∥∥∥ (2.115)

From Eq. (2.115) we can now define pressure as

−p = 1
3 (T11 + T22 + T33) (2.116)

Note that Eq. (2.116) can also be obtained from Eq. (2.113) with the assumption,
σ11 + σ22 + σ33 = 0. Since such an assumption is quite arbitrary, the definition of
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pressure p given by Eq. (2.116) can be regarded as a somewhat arbitrary one. In fact,
in general p is the thermodynamic pressure, which is related to the density ρ and the
temperature through a “thermodynamic equations of state,” p = p(ρ, T ); that is, this
is taken to be the same function as that used in thermal equilibrium (Bird et al. 1987).

If we now consider the state of stress in an isotropic material, by definition the
material has no preferred directions. In simple shear flow, we have

T13 = T31 = 0; T23 = T32 = 0; T12 = T21 �= 0 (2.117)

in which the subscript 1 denotes the direction of flow, the subscript 2 denotes the
direction perpendicular to flow, and the subscript 3 denotes the remaining (neutral)
direction. It follows therefore from Eq. (2.113) that the most general possible state of
stress for an isotropic material in simple shear flow may be represented by∥∥∥∥∥∥
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∥∥∥∥∥∥ (2.118)

Note that one cannot measure p and the components of the extra stress tensor σ

separately during flow of a liquid. Therefore, the absolute value of any one normal
component of stress is of no rheological significance. The values of the differences of
normal stress components are, however, not altered by the addition of any isotropic
pressure (see Eq. (2.118)), and they presumably depend on the rheological properties
of the material. It follows, therefore, that there are only three independent stress quan-
tities of rheological significance, namely, one shear component and two differences of
normal components:

σ12; T11 − T22 = σ11 − σ22; T22 − T33 = σ22 − σ33 (2.119)

Note that the normal stress difference σ11 − σ33 becomes redundant since we have
assumed σ11 +σ22 +σ33 = 0 in defining p by Eq. (2.116). In the rheology community,
N1 = σ11 − σ22 is referred to as the first normal stress difference and N2 = σ11 − σ33
as the second normal stress difference. It now remains to be discussed how the stress
quantities may be related to strain or rate of strain to describe the rheological properties
of materials, in particular polymeric materials.

For steady-state shear flow, the components of the stress tensor T may be expressed
in terms of three independent functions:

σ12 = η(γ̇ )γ̇ N1 = ψ1(γ̇ )γ̇ 2 N2 = ψ2(γ̇ )γ̇ 2 (2.120)

where η(γ̇ ) is referred to as the shear-rate dependent viscosity, ψ1(γ̇ ) as the first
normal stress difference coefficient, and ψ2(γ̇ ) as the second normal stress difference
coefficient. Often, η(γ̇ ), ψ1(γ̇ ), and ψ2(γ̇ ) are referred to as the “material functions”
in steady-state shear flow. Note that N1 and N2, or ψ1(γ̇ ) and ψ2(γ̇ ), describe the fluid
elasticity, which is elaborated on in Chapter 3.

In the past, numerous investigators have reported measurements of the rheological
properties of polymeric liquids. Until now, very few polymeric fluids, if any, which
exhibit a constant value of shear viscosity (i.e., η(γ̇ ) = η0) exhibit measurable values




